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a b s t r a c t

This paper looks at static overbooking models. In theory, a random show demand follows a binomial
distribution with each reservation showing up independently and with the same probability. However, in
practice, some overbooking models assume that the show demand is the product of the overbooking
level and the random show-up rate. The decision model embedded in a commercial revenue manage-
ment system is misspecified. We explore the consequences of the modeling error and find that the
performance of the model with misspecification decreases as show-up probability decreases. Among our
three choices of show-up rate distributions, normal, beta and deterministic, the beta model performs
best. We also identify situations in which an airline might prefer the deterministic model to the normal
model.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Overbooking is practiced by nearly all passenger airlines. They
accept more reservations than their fixed capacity to compensate
for cancellations and no-shows, which can be as high as 50% (Smith
et al., 1992). The financial gain from the overbooking practice has
been estimated to be at least $1 billion (Bailey, 2007). The main
objective of the approach is to find an overbooking level/limite the
maximum number of reservations to hold at any timeethat mini-
mizes an expected cost. This cost is calculated with respect to the
probability distribution of the show demand (show-ups), the
number of reservations that survive to the time of services. The cost
is composed of an oversale cost, which occurs if the realized show
demand exceeds the capacity, and a spoilage cost, which occurs if
the realized show demand is less than the capacity.

The functional form of the show-ups can affect the overbooking
level recommended implied; models with different specifications
of the show demand can lead to different expected costs, and may
yield different overbooking levels. Models commonly assume that
the show demand is linear in the overbooking level; i.e., given the
overbooking level x, the show demand is xR, where the random
variable R is the show-up rate. In some revenue management (RM)
systems, this rate is modeled using a normal/Gaussian distribution
with the mean and variance are periodically estimated from
historical data.

The specificationwith the show demand equaling the product of
the overbooking level and the show-up rate is simple and widely
ruchkul).
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used in practice. It is, however, theoretically deficient under certain
conditions. Suppose that, each reservation shows up indepen-
dently, and that the probability of showing up is identical among all
reservations. In this case, the show demand given the overbooking
level x follows a binomial distribution with parameters x and q,
where q is the show-up probability. Under these conditions the
linear assumption in the airline’s decision model is incorrect e

there is a model misspecification occurs.
In the RM, there is an iterative process inwhich the control (e.g.,

the overbooking level) from the optimization model is enacted, the
data (e.g., the realized show-ups) are collected over several flights,
the parameters (e.g., the mean and variance of the show-up rate
distribution) are forecasted and, finally, the new control is deter-
mined from the optimizationmodel, given the updated parameters.
In this article, we want to explore the consequences of the
modeling error fromwhich the optimization model is misspecified.

Using the optimization model, we consider three show-up rate
distributions, namely normal, beta and deterministic. For each of
the three misspecified models, we provide a closed-form expres-
sion for the overbooking level. To benchmark and evaluate these
models, we construct a model in which the show demand theo-
retically follows a binomial distribution. We also obtain an optimal
overbooking level with respect to the benchmark (binomial) model.
To study the behavior of the iterative process with the misspecified
optimizationmodel, we perform a series of numerical experiments.
We find that as the iterative process goes on for a long time, the
sequence of the average costs with the given misspecified model
converges almost everywhere. The long-run average cost is greater
than the optimal expected cost with the binomial model. In all
tested problem instances, the beta model performs best; the
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percent difference between the optimal cost and the estimated cost
using the beta model is at most 10%. This suggests that the beta
model is quite robust to misspecification. Moreover, we identify
situations inwhich the performance of the deterministic model and
that of the normal model are approximately the same.

Overbookingmodels are of two broad types: dynamic and static.
Regarding the former, the dynamics of reservation requests and
customer cancellations over time are ignored, whereas in dynamic-
models, such inter-temporal effects are explicitly accounted for. We
consider only the static overbooking model because it is similar to
the model used in most commercial RM systems. The classic static
overbooking model assumes that the show demand follows
a binomial distribution (Talluri and van Ryzin, 2004), e.g.
Thompson (1961) finds that this adequately fits the data collected
from Tasman Empire Airways. Other static models assume that the
show demand is the product of the overbooking level and the
show-up rate. The random show-up rate can be modeled using
a parametric distribution, such as uniform (Kasilingam, 1997), beta
(Luo et al., 2009) or normal. Popescu et al. (2006) argue that
modeling the show-up rate as a normal random variable, as is quite
common in practice, is not appropriate and they use a nonpara-
metric method to obtain a histogram, inwhich the number and size
of bins are constructed based on a wavelet method. While these
studies look at static overbooking problems alone, without any
iterative process, the parameters of the show-up rate distribution
developed here are iteratively updated.

2. Overbooking

Because of its simplicity, the static overbooking problem is the
basis of the most widely used methodology for making over-
booking decisions. An overbooking problem is defined as deter-
mining an overbooking level such that expected costs is minimized.
Since an airline operates many repeat flights, we can assume that
decision maker is risk neutral, and the objective of minimizing the
expected value is appropriate.

Let N be the set of natural numbers and Z the set of integers.
For a real number y, [y]þ¼max(y, 0) the positive part of y,
PyR ¼ maxfn˛Z : n � yg the floor of y and ½y� ¼ minfn˛Z : n � yg
the ceiling of y. Assume that the capacity is a known constant c. If
an overbooking level is set to x, denote the random show demand
as S(x). Let ao� 0 be the per-unit oversale cost, and as� 0 the per-
unit spoilage cost. The expected cost is thus:

~f ðxÞ ¼ E
h
ao½SðxÞ � c�þþas½c� SðxÞ�þ

i
(1)

The first and second terms are the oversale and spoilage costs,
respectively. The over salecost is computed as the per-unit oversale
cost ao times the number of show-ups that are denied boarding
½SðxÞ � c�þ. The spoilage cost is found similarly. Consider the
following problem:

min
n
f ðxÞ ¼ ðao þ asÞE

h
ðSðxÞ � cÞþ

i
� asE½SðxÞ�

o
(2)

Since ~f ðxÞ ¼ f ðxÞ þ asc, an optimal overbooking level that
minimizes ~f ðxÞ is identical to the one that minimizes f(x). Eq. (2) is
the basis of the study.

The airline chooses an overbooking level that minimizes the
expected cost, which is calculated with respect to the distribution
of the show demand S(x). In practice, it is usual that the airline does
not know the distribution of the show demand, but it makes
overbooking decisions based on perceived models. To evaluate and
benchmark the perceived models, we develop the actual model, in
which the distribution of the show demand is known. We adopt
terminology similar to that used in Evans and Honkapohja (2001).
2.1. Actual model

Suppose that x˛N reservations have been made in advance and
that each requires a single seat (i.e. there are no group bookings). It
is assumed that reservations show up independently and that the
probability of showing up is identical for all reservations. With the
actual model, the show demand S0(x) follows a binomial distribu-
tion with parameters x and q. Let f0ðxÞ be the objective function in
Eq. (2), where we replace SðxÞ ¼ SoðxÞ.
Proposition 1. With the actual model, the objective function f0ðxÞ is
convex on N. An optimal overbooking level is given as

x�0 ¼ argmaxfx˛N : ðas þ aoÞPðS0ðx� 1Þ � cÞ � asg (3)

The optimality condition can be explained intuitively as follows.
Given that the current overbooking level is x� 1, we want to know
whether to overbook one or more seat. Oversale cost is incurred if
the show demand from the current reservations [of (x� 1) seats] is
at least the capacity. Hence, the expected marginal oversale cost is
aoPðS0ðx� 1Þ � cÞ. We would incur a spoilage cost, if the show
demand from the current reservations is less than the capacity.
Thus, the expected marginal spoilage cost is asPðS0ðx� 1Þ < cÞ. If
the expected marginal spoilage cost is at least the expected
marginal oversale cost [i.e., aoPðS0ðx� 1Þ � cÞ � asPðS0ðx� 1Þ < cÞ],
then we would overbook one more seat.

2.2. Perceived models

Popescu et al. (2006), Kasilingam (1996) and others suggest that
airlines typically do not use a sophisticated approach to predict the
show demand. It is assumed that the show demand is linear in the
overbooking level. Specifically, if the overbooking level is equal to x,
then the show demand is xR, where R is the show-up rate. The
distribution of the show-up rate is constructed from historical data.

We look at parametric methods and consider three distributions
that an airline might use to model the show-up rate. Let Ri be the
random show-up rate in the perceived model i˛f1;2;3g where R1
has a degenerate distribution; i.e., P(R1¼ r)¼ 1, with r˛ (0, 1)
representing a deterministic show-up rate. R2 has a normal distri-
butionwith mean m and variance s2, and R3 follows a standard beta
distribution with shape parameters a and b. Suppose that the
airline uses perceived model i. Let yi denote the parameter of the
show-up distribution Ri; i.e., y1 ¼ r; y2 ¼ ðm; s2Þ; y3 ¼ ða; bÞ. Let
fið$jyiÞ be the objective function in (2), where SðxÞ ¼ xRi. Denote
~xiðyiÞ ¼ argminfiðxjyiÞ. Let gið$jyiÞ be the probability density func-
tion of Ri for each i¼ {2, 3}.

Proposition 2. For each i, the objective function fiðxjyiÞ is convex in
x. With perceived model 1, ~x1ðy1Þ ¼ c=y1. With perceived model
i˛f2;3 ; ~xiðyiÞg solves

Zc=~xiðyiÞ
ai

tgiðtjyiÞdt ¼ ao
ðas þ aoÞ E½Ri� (4)

where a2 ¼ �N, and a3 ¼ 0.

The left-hand side in Eq. (4) is decreasing in ~xiðyiÞ. The over-
booking level can be found via a classical search procedure. The
solution ~xiðyiÞ found in the proposition may not be an integer, but if
an integer overbooking level is desired, one could set it to
~x*i ðyiÞ ¼ argminffiðP~xiðyiÞR jyiÞ; fiðQ~xiðyiÞS j yiÞ g.

3. Iterative process

Suppose that the airline operates many repeat flights. With each
perceived model, an optimal overbooking level depends on the



Fig. 1. Some sample paths with perceived model 1. (a) Overbooking levels. (b) Average
costs.
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show-up rate distribution, whose parameters are periodically
forecasted from the historical data. As new data become available,
the airline updates the parameters of the show-up rate distribution,
the overbooking level is chosen with respect to the updated
distribution, and the process continues. These are sometimes
referred to as the iterative data collection-forecasting-optimization
process.

Suppose that the airline updates information every m flights.
Define the t-th decisionperiod to be a time inwhich the t-th forecast
becomes available. Eachperiodof theprocess consists of three steps:
optimization, data collection, and forecasting, respectively. At the
beginningof the t-thperiod, the forecasts for threeperceivedmodels
are y1t ¼ rt ; y2t ¼ ðmt ; s2t Þ; y3t ¼ ðat ; btÞ. In the optimization
step, the overbooking level with model i is x*i ðyitÞ. In the data-
collection step, the airline with perceived model i, realizes m show
demands fsijt : j ¼ 1;.;mg, the random sample from the actual
distribution [the binomial distribution with parameters x*itðyitÞ and
q]. The realized show-up rates are frijt : j ¼ 1;.;mg where
rijt ¼ sijt=x*itðyitÞ. In the forecasting step, the show-up rate for the
next decision period is forecasted based on the simple exponential
smoothing technique: yi;tþ1 ¼ gibrit þ ð1� giÞyit where gi˛ð0;1Þ is
the smoothing parameter, and brit is the maximum likelihood esti-
mator (MLE) of the parameters of the show-up rate distribution,
determined from the realized show-up rate frijt : j ¼ 1;.;mg. For
instance, with perceived model 1, brit ¼ r1t and perceived model 2,br2t ¼ ðr2t ; ð

Pm
j¼1ðr2jt � r2tÞ2Þ=mÞ, where rit ¼ ðPm

j¼1rijtÞ=m. We
restrict ourselves to the exponential smoothing method, because of
its simplicityandpopularity (Makridakis et al.,1998), and totheMLE.
After obtaining the new forecast yi;tþ1, the process continues with
the optimization step in period (tþ 1) to determine x*i;tþ1ðyi;tþ1Þ etc.

4. Numerical experiments

Two sets of numerical experiments are conducted. In the first,
we study the asymptotic behavior of the perceived model as the
number of decision periods in the iterative process becomes very
large. In the second, we compare the per-flight costs if the airline
implements the overbooking level from each of the three perceived
models. To estimate the expected costs, we perform a Monte Carlo
simulation. With the perceived models, the parameters of the
show-up rate distribution are updated everym¼ 30 flights, and the
smoothing parameters are g1 ¼ g2 ¼ g3 ¼ 0:5.

4.1. Asymptotic behavior investigation

Data for the experiments are obtained from one of the leading
passenger airlines in Thailand. We consider a single-leg weekly
flight with capacity c¼ 338 seats. The airline sets the per-unit
oversale and spoilage costs to as¼ ao¼ 4800, which is the reference
fare of the flight. With the actual model, given an overbooking level
x, the show demand follows the binomial distribution with
parameters x and q¼ 0.945.

We report only on the deterministic model, perceived model 1,
because the asymptotic behaviors of the other models are similar.
Fig. 1 shows four sample paths, when the initial show-up rates are
0.945, 0.945, 0.875 and 0.875. From Fig. 1a, the sequence of the
overbooking levels does not converge. For instance, when the initial
show-up rate is r1¼0 .945, the last five overbooking levels of the
first sample path (the solid line) are 357, 357, 357, 357, 358, whereas
those of the second sample path (the dotted line) are 357, 358, 358,
357, 358.

Fig. 1b suggests that two sample paths of the average costs
corresponding to r1¼0.945 converge, and so do the other two
corresponding to r1¼0.875. Moreover, all four sample paths of
the average costs converge to a single number; approximately
16,600. With different show-up rates, the sequences of the
average costs do converge to the same point. When many repli-
cations are carried out, the results suggest that almost all sample
paths converge to a single point. We conclude that the long-run
average cost converges to a constant with probability one.
Although it does not converge to the optimal cost based on the
actual model (which is 16522.26), the difference between the two
is only 0.47%.
4.2. Performance evaluation

In the second set of experiments, let m¼ 30, and c¼ 338 (as in
the first set). Let the initial forecasts for the three perceived
models be r1¼0.945, ðm1; s21Þ ¼ ð0:945;0:0262Þ and (a1, b1) ¼
(62.327, 3.855). The rest of the problem parameters e the show-up
probability q and the pair of oversale and spoilage costs (as, a0) e
are varied systematically according to the 3� 4 factorial experi-
ment. The first factor, the show-up probability, has three levels q 3
{0.8, 0.5, 0.3}, and the second factor, the cost parameter, has four
levels (as, ao) 3 {(4800, 4800), (4800, 9600), (9600, 4800), (9600,
9600)}. The problem parameters for the experiments are shown in
Table 1a.



Table 1
Performance of perceived models.

(a) Problem parameters for all twelve experiments

q\(as, ao) (4800, 4800) (4800, 9600) (9600, 4800) (9600, 9600)

0.8 Ex.1 Ex.2 Ex.3 Ex.4
0.5 Ex.5 Ex.6 Ex.7 Ex.8
0.3 Ex.9 Ex.10 Ex.11 Ex.12

(b) Cost associated with overbooking levels from perceived models

Experiment Actual model optimal cost Linear models

Perceived model 1 Perceived model 2 Perceived model 3

Mean % Diff. SE Mean % Diff. SE Mean % Diff. SE

1 31,456.0 32,577.5 3.6 35.0 32,598.6 3.6 34.9 32,252.0 2.5 31.8
2 42,542.3 47,877.6 12.5 32.4 43,879.9 3.1 36.5 43,502.3 2.3 32.5
3 43,458.6 49,049.9 12.9 73.2 45,449.5 4.6 65.6 44,810.5 3.1 60.7
4 62,912.1 65,154.3 3.6 69.9 65,202.2 3.6 69.8 64,508.5 2.5 63.7
5 49,769.6 53,986.8 8.5 127.4 53,989.9 8.5 127.5 52,264.6 5.0 105.5
6 67,473.2 78,414.3 16.2 121.6 71,840.8 6.5 127.1 70,063.2 3.8 103.8
7 68,595.1 82,946.1 20.9 261.1 76,698.9 11.8 253.9 73,493.6 7.1 212.3
8 99,539.2 107,988.8 8.5 255.1 108,001.2 8.5 255.3 104,498.8 5.0 210.7
9 58,884.4 66,244.9 12.5 206.1 66,270.6 12.5 206.5 62,749.0 6.6 158.8
10 79,863.3 95,203.0 19.2 198.8 87,461.9 9.5 205.2 84,047.1 5.2 158.2
11 81,140.6 103342.7 27.4 421.4 95,679.5 17.9 415.0 88,700.2 9.3 319.1
12 117,768.9 132,546.4 12.5 412.9 132,619.4 12.6 413.7 125,721.7 6.8 319.1

1 The computational time of the deterministic model is much less than that of the
normal model. Hence, the deterministic model might be preferred to the normal
model for some airlines with as ¼ ao.
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In each simulation, we fix the number of decision periods to be
400. (From Fig. 1b, the average cost for a given initial show-up rate
has already settled down since the 400-th decision period.) Table
1b shows the optimal expected cost based on the actual model,
the estimated cost when the airline uses the overbooking level
from the perceived model, the percent difference between the two
costs, and the standard error of the estimated cost. In each exper-
iment, the number of simulation replications is 300. (In all exper-
iments in Table 1b, the standard error is within 0.5% of the
estimated cost.)

In each of the experiments, the beta model, perceived model 3,
outperforms the deterministic and normal models. The percent
difference between the estimated cost with the beta model and the
optimal expected cost ranges from two to nine. The beta show-up
rate is quite robust to modeling error. Moreover, in most cases the
estimated variance of the cost using the beta model is the smallest.
The beta model is “better” than the other two linear models,
regardless of whether the objective is to minimize the expected
cost or to minimize the variance of the cost.

In each of the six experiments in which assao, the estimated
cost with the deterministic model (perceived model 1) is highest
among the three perceived models. Recall that the deterministic
model takes into account only the forecasted show-up rate,
whereas the other perceived models take into account not only the
forecast but also the cost parameters. Thus showing that the indi-
cating the deterministic model performs the worst is not
surprising.

In the six experiments, the normal model is outperformed by the
beta model. This may result from the unbounded tail of the normal
distribution. Supposethat theoverbooking level isx˛N.Thenumberof
showdemand in the benchmarkmodel S0(x) is binomially distributed
with parameters x and q, whereas that in perceived model i˛f2;3g is
SiðxÞ ¼ xRi where random variables R2 and R3 are normal and beta,
respectively. In the benchmark model, S0(x) has a support on
f0;1;2;.; xg; the actual show demand S0(x) never exceeds the
overbooking level x. Recall that the support of the beta distribution is
(0, 1), whereas that of the normal distribution is ð�N;NÞ. The show
demand in the normalmodel can exceed the overbooking level. There
isastrictlypositiveprobability that theshowdemandinnormalmodel
isgreater thantheoverbooking level; i.e.,PðS2ðxÞ > xÞ ¼ PðR2 > 1Þ ¼
1� Fðð1� mÞ=sÞ > 0 where m and s2 are mean and variance of R2,
respectively, andF is the distribution function of the standard normal
random variable. In the beta model, such probability is zero; i.e.,
PðS3ðxÞ > xÞ ¼ PðR3 > 1Þ ¼ 0. In each of the benchmark and beta
models, the showdemandcannot exceed theoverbooking level, but in
the normal model it can. The beta model is more theoretically sound
than the normal model.

In each of the other experiments in which as¼ ao, the deter-
ministic and normal models perform about the same. Recall that in
the deterministic model the overbooking level is in a simple closed-
form, whereas in the normal model it is found numerically
(Proposition 2).1

From Table 1b, the percent difference increases as the show-up
probability decreases. For instance, with (as, ao)¼ (4800, 4800) and
with perceived model 3, the percent difference increases from 2 to
5 to 7, when the show-up probability decreases from 0.8 to 0.5 to
0.3. If the airline anticipates a high show-up probability, then
making an overbooking decision with the perceived model might
be acceptable. However, if it anticipates a low show-up probability,
the airline needs to be very cautious using the overbooking level
recommended by the perceived model, since the performance of
the perceived model gets worse when the show-up probability
decreases.
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